Fast radio bursts (FRBs), known for their brief but powerful emissions of radio waves, have been traced to extremely compact cosmic objects, including neutron stars and potentially black holes. These bursts, lasting only a millisecond, carry immense energy, rivaling the brightness of entire galaxies. Their origins have long puzzled astronomers, with discoveries ranging from our galaxy to distances of 8 billion light-years. A recent breakthrough has narrowed down the source of at least one FRB to a highly magnetic region surrounding a neutron star.

Study Pinpoints FRB 20221022A's Origins

According to a study published in Nature, the team from the Massachusetts Institute of Technology (MIT) examined FRB 20221022A, a burst detected from a galaxy 200 million light-years away. By analyzing its scintillation — a phenomenon causing light to appear to twinkle — the researchers identified the origin as being within 10,000 kilometers of a neutron star, an area known as the magnetosphere. This marks the first conclusive evidence of FRBs emerging from such a region.

Insights from Scintillation Analysis

As reported by Phys.org, the study revealed that the burst exhibited steep variations in brightness, indicative of scintillation caused by gas within its host galaxy. This gas served as a lens, allowing researchers to determine the burst's proximity to its source. Lead author Dr. Kenzie Nimmo from MIT told the publication the significance of locating the origin within hundreds of thousands of kilometers from the source, contrasting it with theories suggesting further shockwave origins.

Polarization Patterns Suggest Rotation

Collaborators from McGill University found the burst's light to be highly polarized, forming an S-shaped curve—a feature characteristic of rotating neutron stars, also known as pulsars. This finding further supports the conclusion that FRBs originate from highly magnetised environments.

Potential for Future Research

The study, involving experts like Dr. Kiyoshi Masui and others, highlight the potential of scintillation as a tool for pinpointing FRB origins. These findings pave the way for understanding the diverse physics behind these enigmatic bursts, which are detected daily by advanced telescopes like CHIME.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, threads and Google NewsFor the latest videos on gadgets and tech, subscribe to our YouTube channelIf you want to know everything about top influencers, follow our in-house Who'sThat360 on Instagram and YouTube,

Shenzhou-15 Spacecraft Debris Burns Over Los Angeles During Uncontrolled Reentry


American Burying Beetle Experiences Population Rise in Nebraska's Loess Canyons



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *